UNDERSTANDING CONSUMER SWITCHING INTENTIONS TOWARD TELKOMSEL ONE IN WEST JAVA: A PUSH-PULL-MOORING MODEL APPROACH

Juan Ramadheni Hermawan¹; Nila Armelia Windasari²; Husnita³

Institut Teknologi Bandung^{1,2}; Telkom University³ Email : Jramadheni@gmail.com¹; Nila.armelia@sbm-itb.ac.id²; Husnita@telkomuniversity.ac.id³ Bandung, Kota Bandung

ABSTRACT

In the Society 5.0 era, seamless digital connectivity is essential. Telkom, through its "Five Bold Moves" transformation agenda, integrated IndiHome into its mobile subsidiary, Telkomsel, to streamline operations and enhance customer experience. Following this, Telkomsel launched Telkomsel One, a Fixed Mobile Convergence (FMC) product that combines mobile and fixed broadband into a single platform. The service offers a bundled package of internet, voice, and entertainment for a unified experience at home and on the go. Despite its strategic potential, adoption has not yet reached its potential in West Java, highlighting the need to understand consumer behavior better. This study applies the Push – Pull – Mooring (PPM) model to examine switching intentions toward Telkomsel One. Push factors include dissatisfaction, pull factors reflect perceived benefits and convenience, and mooring factors involve loyalty and switching costs. The study also explores generational differences among Generation Z, Millennials, and Generation X. Using SEM-PLS with 300 respondents in West Java, findings show that pull factors have the strongest influence on switching intentions, followed by moderate push effects, while mooring factors act as a significant barrier, particularly for older users. Gen Z is digitally open and engaged, but they are not typically the main decision-makers when it comes to household connectivity products. Millennials show a strong intent to adopt customizable services that offer clear value and fairness. Gen X is the most resistant due to attachment and complexity, requiring trust-driven and personalized support.

Keywords: Telecommunication; Fixed Mobile Convergence; Consumer Behavior; Consumer Switching Intention; Push-Pull-Mooring Model

ABSTRAK

Di era Society 5.0, konektivitas digital tanpa hambatan menjadi hal yang sangat penting. Telkom, melalui agenda transformasi "Five Bold Moves", mengintegrasikan IndiHome ke dalam anak Perusahaan selulernya, Telkomsel, guna menyederhanakan operasional dan meningkatkan pengalaman pelanggan. Setelah integrasi ini, Telkomsel meluncurkan Telkomsel One, sebuah produk Fixed Mobile Convergence (FMC) yang menggabungkan layanan broadband seluler dan tetap dalam satu platform terpadu. Layanan ini menawarkan paket bundling yang mencakup internet, layanan suara, dan hiburan untuk pengalamn yang menyatu di rumah maupun bepergian. Meskipun secara strategi memiliki potensi yang besar, adopsi Telkomsel One di Jawa Barat masih berada pada tahap perkembangan dan belum sepenuhnya mencerminkan potensi pasarnya. Hal ini menunjukan pentingnya pemahaman yang lebih dalam terhadap perilaku konsumen. Penelitian ini menggunakan model Push-Pull-Mooring untuk

menganalisis niat pelanggan untuk berpindah (switching intention) ke Telkomsel One. Push factors mencerminkan ketidakpuasan terhadap layanan yang digunakan saat ini, pull factors berkaitan dengan persepsi manfaat dan kemudahan layanan baru, sementara mooring factors mencakup loyalitas dan biaya atau hambatan untuk berpindah layanan. Penelitian ini juga mengeksplorasi perbedaan perilaku berdasarkan generasi, yakni Generasi Z, Milenial, dan Generasi X. Dengan menggunakan metode SEM-PLS dan data dari 300 responden di Jawa Barat, hasil penelitian menunjukan bahwa pull factors memiliki pengaruh paling kuat terhadap niat berpindah, diikuti oleh push factors yang berpengaruh sedang, sementara mooring factors menjadi hambatan signifikan, terutama pada pengguna dari kelompok usia yang lebih tua. Gen Z cenderung terbuka secara digital dan aktif, namun mereka umumnya bukan pengambil Keputusan utamam dalam urusan langganan internet rumah. Sementara itu, Milenial menunjukan minat kuat terhadap layanan yang dapat disesuaikan, memberikan manfaat jelas, dan harga yang adil. Di sisi lain, Generasi X menjadi kelompok yang paling sulit berpindah karena ketertarikan pada layanan lama dan persepsi kerumitan, sehingga membutuhkan pendekatan yang lebih personal dan berbasis kepercayaan.

Kata Kunci : Telekomunikasi; Fixed Mobile Convergence; Perilaku Konsumen; Niat Berpindah Pelanggan; Push-Pull-Mooring Model

INTRODUCTION

Society 5.0 is a new phase where the digital and physical worlds are fully connected. This concept pushes businesses to provide smarter and more human-centered services by using advanced technology (Fujii et al., 2018). In this era, internet access has become a basic need. Companies, especially in telecommunications, need to innovate and offer services that are more integrated and meet consumer needs (Roblek et al., 2020). Responding to the transformation driven by Society 5.0, PT Telkom Indonesia launched the "Five Bold Moves", a strategic agenda to strengthen digital competitiveness. One of the key initiatives was the integration of IndiHome into Telkomsel in June 2023, aiming to realize Fixed Mobile Convergence, a unified platform that combines mobile and fixed broadband to deliver seamless internet access (Condoluci et al., 2019).

Following this, Telkomsel introduced Telkomsel One, a FMC product offering bundled internet, voice, entertainment, and service touchpoints through a single subscription. Its features, including OneApp, OneBill, OneTouchpoint, and OneSolution, are designed to simplify service usage and improve customer experience. Despite strong infrastructure and high internet penetration, especially in West Java, which has a penetration rate of 85,52% (APJII, 2024), adoption of Telkomsel One has not yet reached market potential. This gap highlights the need to understand what drivers or

inhibitors consumer adoption of on convergence services. Therefore, this study applies the Push-Pull-Mooring (PPM) model to analyze switching intention toward Telkomsel One. Push factors refer to negative experiences with the current service, such as dissatisfaction. Pull factors represent positive attraction from alternative services, like better features or innovation. Mooring factors include switching barriers, such as loyalty or perceived cost, which can hold consumers back from switching to a new provider (Al-Mashraie et al., 2020)

This research also explores how these factors vary across generational segments, Generation Z, Millennials, and Generation X, to uncover distinct behavior patterns and support the development of more targeted service strategies (Francis & Hoefel, 2018).

LITERATURE REVIEW AND HYPOTHESIS DEVELOPMENT

Consumer Behavior

Consumer behavior examines the decision-making process of individuals, groups, and organizations as they choose, purchase, utilize, and discard products, services, ideas, or experiences to fulfill their needs and desires. To deliver value to customers, marketers must gain a deep understanding of both the theoretical concepts and the practical aspects of consumer behavior (Kotler et al., 2022). Consumer choices often involve a series of actions and are shaped by various factors such as demographic characteristics, lifestyle preferences, and cultural influences. Moreover, decision-making becomes more complex when the needs and desires of multiple individuals or groups must be considered. To effectively meet customer demands, a company must thoroughly understand its own internal capabilities. This requires evaluating several organizational dimensions, including financial status, overall managerial competence, production capacity, research and development capabilities, technological expertise, brand reputation, and marketing proficiency (Mothersbaugh & Hawkins, 2016).

Switching Intention

Switching intention refers to a Consumer's expressed likelihood or intention to end their current service relationship, while actual switching is the tangible, observable action of moving to a different service provider (Wirtz et al., 2014). Switching intention is based on how Consumers feel after using a service. If they are more satisfied, they usually have a better attitude toward the company and are more likely to keep using the service, while an unsatisfied Consumer is more likely to feel unhappy and eventually

consider switching to a different provider (Quoquab et al., 2018). Switching intention is when a consumer plans or thinks about staying with their current provider or moving to another one. It is different from switching behavior because intention only shows the plan to change, while switching behavior means the Consumer moves to a new provider (Van Der Merwe, 2015).

Push-Pull-Mooring (PPM) Model

The PPM Framework, commonly used in migration studies to explore the reasons behind people's movement, can also be applied to understand Consumer switching in the telecom industry. Since both involve the idea of moving from one option to another, the PPM model is considered a useful tool to deeply explore causes, motivation, and factors that drive Consumer churn (Al-Mashraie et al., 2020). Push effects are the negative reasons that make Consumers unhappy with their current provider and encourage them to leave. Push is influenced by low service quality, pricing problems, low satisfaction, and low trust (Bansal et al., 2005). Pull effects are the positive attractions that draw Consumers toward a new provider. Pull is influenced by the attractiveness of alternatives, perceived value or benefits, and better service or technology. Meanwhile, mooring effects are the factors that make Consumers stay with their current provider, even when they experience push or pull influences. Mooring is influenced by switching costs, habit or inertia, and social norms or personal commitments. When applying the PPM framework, researchers often use Partial Least Squares to gain deeper insights into migration patterns (Al-Mashraie et al., 2020).

Generational Segmentation

Customer segmentation is a core component of customer relationship management (CRM) aimed at gaining insights into customer behavior. It involves categorizing customers into more uniform subgroups based on shared behaviors, attributes, or preferences. Typically, this process relies on unsupervised learning techniques, such as clustering methods. The primary objective of segmentation is to support personalized targeting efforts, allowing marketing professionals to craft specific strategies tailored to the unique characteristics of each segment (Alves Gomes & Meisen, 2023). Generation Z, typically defined as those born between 1995 and 2010, is widely recognized as the first cohort of true digital natives. From a young age, they have been immersed on the internet, mobile technology, and social media, which have

shaped their behavior as a hypercognitive group skilled at gathering, comparing, and synthesizing information from various sources while seamlessly navigating between digital and physical environments. Their impact extends across all age groups and income levels, influencing consumption habits and shaping brand relationships. At the heart of Gen Z behavior lies a strong desire for authenticity, both individually and collectively. This pursuit of truth fosters a culture of open expression and inclusivity, as they are more willing to engage with diverse perspectives and identities (Francis & Hoefel, 2018). Generation Z expressing individual identity plays a pivotal role in their lives, with consumption serving as a key avenue for self-expression. Unlike earlier generations who often purchased brands to align with social norms, Gen Z consumers are driven by a personal "search for truth", which fosters a comfort with having an "undefined identity". This openness allows them to explore and evolve their sense of self over time. They place high value on uniqueness and, much like Millennials, actively seek personalized products, often willing to spend more on items that emphasize their distinctiveness (Francis & Hoefel, 2018). Millennials, often referred to as Generation Y, are individuals born between 1980 and 1994. This generation came of age during a period marked by rapid globalization and the rise of the internet, which significantly influenced their worldview and behavior. Millennials, also known for their emphasis on experience-driven consumption, have traditionally spent on activities like travel and attending festivals. Although Gen Z is identified as being motivated by the pursuit of truth in their consumption habits, Millennials are increasingly shifting toward viewing consumption as a form of access rather than ownership, mirroring the Gen Z mindset. In parallel with Gen Z, consumers across age groups are showing a growing preference for highly personalized products, and many are willing to pay extra for items that reflect their personal identity (Francis & Hoefel, 2018). Generation X, defined as individuals born between 1960 and 1979, matured during a time of significant political shifts, marked by the ascent of capitalism and a focus on meritocratic values. Today, like Gen Z, this cohort, along with Baby Boomers and Millennials, is increasingly embracing the concept of access-based consumption over traditional ownership. A notable portion of these older generations expects businesses to address customer complaints on the same day. Despite age differences, concerns over data privacy remain common, with many Gen X consumers hesitant to share personal information with companies. Additionally,

they hold strong ethical standards for brands, with many recalling past corporate

scandals and choosing not to support companies involved in unethical behavior (Francis

& Hoefel, 2018).

Hypothesis Development

Push Factors

Dissatisfaction plays a key role in encouraging consumers to switch telecom

service providers. When consumers feel frustrated or underserved, their intention to stay

decreases (Al-Mashraie et al., 2020) . This leads to the following hypothesis being

proposed:

H1: Push factors have a significant negative effect on switching intention.

Pull Factors

Perceived value and convenience significantly increase the likelihood of

switching intention, as consumers are more motivated to leave their current provider

when they see clear benefits in a new service (Sugandha & Indarwati, 2021). This leads

to the following hypothesis being proposed:

H2: Pull factors have a significant positive effect on switching intention.

Mooring

Such barriers act as inhibitors in the decision-making process, reducing the

tendency to change providers even when push and pull factors are present (Jung et al.,

2017). This leads to the following hypothesis being proposed:

H3: Mooring factors have a significant negative effect on switching intention.

Segment Based Hypothesis

Each generation demonstrates unique behavioral patterns when considering

service switching. Generation Z is highly driven by perceived digital value and

convenience, Millennials respond well to practical benefits and bundled offers, while

Generation X tends to be more hesitant due to loyalty and perceived complexity

(Francis & Hoefel, 2018). This leads to the following hypothesis being proposed:

H4: The influence of push, pull, and mooring effects on switching intention varies

significantly across different generational groups (Gen Z, Millennials, and Gen X)

RESEARCH METHOD

Method is a method of work that can be used to obtain something. While the

research method can be interpreted as a work procedure in the research process, both in

searching for data or disclosing existing phenomena (Zulkarnaen, W., Amin, N. N., 2018:113). This study applies a quantitative research design to examine the influence of Push, Pull, and Mooring (PPM) factors on consumer switching intention toward Telkomsel One in West Java. The approach focuses on testing hypotheses through statistical analysis using Partial Least Squares Structural Equation Modeling (PLS-SEM). The research also incorporates Multi-Group Analysis (MGA) to explore generational differences across Gen Z, Millennials, and Gen X. The target population includes mobile and fixed internet users in West Java, especially Telkomsel mobile users, IndiHome users, and potential customers who have not yet subscribed to Telkomsel One (Sekaran & Bougie, 2016). The study uses purposive sampling, selecting respondents based on relevance to the research objectives. The sample size was determined using the 10-times rule for PLS-SEM, which recommends at least 10 times the maximum number of structural paths targeting one construct (Hair Jr et al., 2021). With three predictors of switching intention, the minimum is 30; however, based on marketing research guidelines, a more robust sample of 300 respondents was collected to ensure generalizability (Malhotra et al., 2020). The study uses structured questionnaires based on validated indicators from previous literature to measure Push, Pull, Mooring, and Switching Intention variables. Responses were collected using a 5point Likert scale (Neuman, 2014). Variable operationalization is adapted from (Jung et al., 2017), (Hsieh et al., 2012), and (Sugandha & Indarwati, 2021), detailed in the instrument table. Primary data were collected through an online questionnaire distributed to respondents in West Java. Secondary data such as reports, internal Telkomsel documents, and academic literature were used to support the study design and analysis (Sekaran & Bougie, 2016). The study uses PLS-SEM via SmartPLS software to evaluate both measurement (outer) and structural (inner) models. Reliability, convergent validity, and discriminant validity are assessed using Cronbach's Alpha, Composite Reliability, AVE, and HTMT ratio (Hair Jr et al., 2021). Hypotheses are tested through bootstrapping, and model fit is assessed using SRMR and NFI indicators. To capture segment-based insights, Multi-Group Analysis (MGA) is applied to compare the effects of PPM factors across different generations, supporting targeted strategic recommendations (Hair Jr et al., 2021).

RESULT AND DISCUSSION

Result

The study surveyed 300 respondents from West Java. Females made up 53% of the sample, while 47% were male. Most participants were aged 31-45 (45%), followed by > 46 (29%), and age 18-30 (26%). In terms of education, 78% held a bachelor's degree, with the rest having a high school, master's, or doctoral background. Occupationally, 53% were employees, 26% entrepreneurs, and the rest were students, housewives, or educators. The majority had monthly incomes above IDR 5 million, indicating strong purchasing power. Psychographically, 91% used Telkomsel as their mobile provider, and 68% subscribed to IndiHome for fixed broadband. Awareness of Telkomsel One was high, with 81% of respondents familiar with the service. These results suggest a digitally literate audience with good income potential and relevance for FMC offerings like Telkomsel One look at Picture 1.

The measurement model evaluation confirmed that all constructs met the criteria for convergent validity, with Average Variance Extracted (AVE) values exceeding 0.50 and most indicator loadings above 0.70. Although two indicators under the Mooring construct had slightly lower loadings, the overall AVE was acceptable. Reliability analysis showed strong internal consistency, as all constructs had Cronbach's Alpha and Composite Reliability values above the recommended threshold of 0.70. Discriminant validity was also established through cross-loading analysis, the HTMT ratio (< 0.90), Fornell-Larcker criterion, indicating that each construct was empirically distinct. In the structural model, no multicollinearity issues were found as all VIF values were well below 5. The path analysis revealed that Pull factors had a positive and significant effect on switching intention ($\beta = 0.496$, p < 0.001), while Mooring factors had a negative and significant effect ($\beta = -0.115$, p = 0.0016). Push factors, however, showed a negative but statistically insignificant effect ($\beta = -0.109$, p = 0.055). The model's R² value was 0.293, suggesting that Push, Pull, and Mooring factors collectively explained 29.3% of the variance in switching intention. Effect size analysis showed that Pull had a medium impact ($f^2 = 0.331$), while Push and Mooring had small effects. The predictive relevance $(Q^2 = 0.267)$ indicated the model's ability to predict switching intention accurately. Lastly, model fit was confirmed with an SRMR of 0.081 and an NFI of 0.814, reflecting an acceptable level of fit for exploratory research. The Multi-Group Analysis (MGA) was conducted to explore differences in the effects of Push, Pull, and Mooring factors

on switching intention across generational segments: Gen Z (18–25), Millennials (26–40), and Gen X (>40). The results revealed that Pull factors had a positive and significant influence on switching intention for Gen Z and Millennials, but not for Gen X. In contrast, Push and Mooring factors were not statistically significant across all segments. While no statistically significant differences were found between groups in terms of path coefficients (p > 0.05), Millennials showed the strongest response to Pull effects, suggesting they are the most receptive to bundled service offerings. Gen Z also responded positively, although their role as decision-makers may be limited. Gen X, meanwhile, showed signs of resistance, particularly due to stronger Mooring (inertia) effects. These findings highlight the importance of segment-specific strategies: focusing on value and convenience for Millennials, digital engagement for Gen Z, and trust-building with simplified migration processes for Gen X.

Discussion

The study confirms that pull factors such as the attractiveness of bundled features, convenience, and perceived value have a positive and significant impact on switching intention toward Telkomsel One in West Java. This aligns with prior research ((Sugandha & Indarwati, 2021); (Quoquab et al., 2018)) emphasizing the role of perceived benefits and innovation in driving switching behavior. Indicators PL1 and PL5 had the highest loadings, showing that respondents see real added value in the integration and simplicity offered by Telkomsel One. While global studies support pull dynamics, few have addressed how consumers in emerging markets perceive digital bundling in FMC services. This research fills that gap by showing that perceived completeness and convenience strongly influence decisions, especially among digital-savvy and value-driven users in high-brand-awareness regions like West Java.

Conversely, the study finds that push factors such as dissatisfaction with current services have a negative and non-significant effect on switching intention. This suggests that dissatisfaction alone does not strongly influence consumers' willingness to adopt Telkomsel One in West Java.

This outcome contrasts with prior studies ((Bansal et al., 2005); (Jung et al., 2017)), which identified dissatisfaction as a key driver of switching. The gap lies between the theoretical expectations of the PPM model and actual consumer perceptions. While PU1 and PU2 showed high loadings, survey responses revealed that 66%

disagreed their connection was unstable and 71% disagreed their speed was inadequate, indicating general satisfaction with existing services.

Thus, in the Indonesian FMC context, especially West Java, dissatisfaction is not a sufficient trigger for switching unless reinforced by stronger pull or mooring dynamics.

Mooring factors have a negative and significant effect on switching intention. This means that consumers who find the switching process too complex, feel comfortable with their current setup, or perceive little urgency to change, are less likely to adopt Telkomsel One in West Java. This aligns with prior research ((Jung et al., 2017); (Hsieh et al., 2012)), which shows that perceived effort, habit, and emotional attachment can deter switching even when better alternatives exist. In this study, M3 ("the process is too complex and impractical") and M1 ("requires many steps and time") had the highest loadings, confirming that operational complexity is a major psychological barrier. Respondents were especially discouraged by the multiple steps involved, such as installation, SIM replacement, and activation. In contrast, M4 (habit) and M5 (billing comfort) had lower loadings, indicating that routine comfort alone is insufficient to explain inertia in this context. The findings suggest that practical switching barriers outweigh habitual ones.

While mooring has been widely studied in switching behavior literature, few studies isolate operational complexity as a key inhibitor in the FMC market particularly in Indonesia, West Java. This research addresses that gap, showing that perceived difficulty, not just loyalty, can significantly hinder adoption, even for high-value services.

The Multi-Group Analysis (MGA) further revealed that generational segments responded differently (Francis & Hoefel, 2018). Millennials were the most responsive to Pull factors, showing high openness to value-based service innovation. Gen Z also showed a positive response but may have limited influence in decision-making related to household connectivity. Gen X, on the other hand, demonstrated inertia and hesitancy, likely driven by stronger Mooring effects such as habit and risk aversion. These insights suggest that targeted strategies are necessary: emphasize personalization and digital convenience for younger users, while simplifying switching processes and building trust for older segments.

In summary, this study supports the PPM model's applicability in the Indonesian telecommunications context. Pull factors emerged as the most influential driver of switching intention, while Mooring factors acted as significant barriers. Push effects were weaker than expected, indicating that dissatisfaction alone may not be sufficient to motivate switching. The findings highlight the value of segment-specific marketing strategies that align with the behavioral tendencies of different generations.

CONCULSION

This study explored the low adoption of Telkomsel One in West Java using the Push-Pull-Mooring (PPM) model. The findings show that pull factors, such as bundled service attractiveness and perceived value, have the strongest positive influence on switching intention. Mooring factors, including habit and perceived switching complexity, act as significant barriers, particularly among older users. Meanwhile, push factors, such as dissatisfaction with current providers, have a relatively limited impact. Generational differences reveal distinct behavioral patterns. Gen Z is generally open to switching but often lacks decision-making authority within households. Millennials show the strongest intent to adopt when the value proposition is clear and relevant to their needs. In contrast, Gen X tends to be more resistant due to emotional attachment and the perceived hassle of switching. These insights highlight the importance of adopting tailored strategies rather than a one-size-fits-all approach to improve adoption. This research is limited by its geographic focus on West Java, the use of purposive sampling, and its reliance on intention-based data rather than actual switching behavior. Additionally, the study concentrated on respondents who were either current or potential Telkom Group users. Future research should consider expanding the respondent base to include those who are not current Telkomsel or IndiHome users, to better understand how to attract completely new market segments. It would also be valuable to examine the effectiveness of Telkomsel One's marketing strategy, specifically how messaging, media channels, and positioning affect public perception and influence customer decision-making. Incorporating behavioral or longitudinal data could further validate whether switching intentions lead to actual service adoption.

REFERENCES

Al-Mashraie, M., Chung, S. H., & Jeon, H. W. (2020). Customer switching behavior analysis in the telecommunication industry via push-pull-mooring framework: A machine learning approach. *Computers & Industrial Engineering*, 144, 106476.

- Alves Gomes, M., & Meisen, T. (2023). A review on customer segmentation methods for personalized customer targeting in e-commerce use cases. *Information Systems and E-Business Management*, 21(3), 527–570.
- APJII. (2024). Survei Internet APJII 2024. https://survei.apjii.or.id/survei/register/33?type=free
- Bansal, H. S., Taylor, S. F., & St. James, Y. (2005). "Migrating" to new service providers: Toward a unifying framework of consumers' switching behaviors. *Journal of the Academy of Marketing Science*, 33(1), 96–115.
- Condoluci, M., Johnson, S. H., Ayadurai, V., Lema, M. A., Cuevas, M. A., Dohler, M., & Mahmoodi, T. (2019). Fixed-mobile convergence in the 5G era: From hybrid access to converged core. *Ieee Network*, 33(2), 138–145.
- Francis, T., & Hoefel, F. (2018). True Gen': Generation Z and its implications for companies. *McKinsey & Company*, 12(2), 1–10.
- Fujii, T., Guo, T., & Kamoshida, A. (2018). A consideration of service strategy of Japanese electric manufacturers to realize super smart society (Society 5.0). *International Conference on Knowledge Management in Organizations*, 634–645.
- Hair Jr, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Partial least squares structural equation modeling (PLS-SEM) using R: A workbook. Springer Nature.
- Hsieh, J.-K., Hsieh, Y.-C., Chiu, H.-C., & Feng, Y.-C. (2012). Post-adoption switching behavior for online service substitutes: A perspective of the push–pull–mooring framework. *Computers in Human Behavior*, 28(5), 1912–1920.
- Jung, J., Han, H., & Oh, M. (2017). Travelers' switching behavior in the airline industry from the perspective of the push-pull-mooring framework. *Tourism Management*, 59, 139–153.
- Kotler, P., Keller, K. L., & Chernev, A. (2022). *Marketing Management (L. Huddon (ed.)*. Pearson Education Limited.
- Malhotra, N. K., Nunan, D., & Birks, D. F. (2020). Marketing research. Pearson UK.
- Mothersbaugh, D. L., & Hawkins, D. I. (2016). Consumer behavior: Building marketing strategy. McGraw-Hill.
- Quoquab, F., Mohammad, J., Yasin, N. M., & Abdullah, N. L. (2018). Antecedents of switching intention in the mobile telecommunications industry: a partial least square approach. *Asia Pacific Journal of Marketing and Logistics*, 30(4), 1087–1111.
- Roblek, V., Meško, M., Bach, M. P., Thorpe, O., & Šprajc, P. (2020). The interaction between internet, sustainable development, and emergence of society 5.0. *Data*, 5(3), 80.
- Sekaran, U., & Bougie, R. (2016). Research methods for business: A skill building approach. john wiley & sons.
- Sugandha, A. P., & Indarwati, T. A. (2021). Pengaruh push, pull, dan mooring terhadap switching intention pada konsumen pengguna wifi DI era pandemi covid-19. *Jurnal Ilmu Manajemen*, 9(4), 1537–1548.
- Van Der Merwe, M. C. (2015). A Comparison Between Switching Intention and Switching Behaviour in the South African Mobile Telecommunications Industry. University of Pretoria (South Africa).
- Wirtz, J., Xiao, P., Chiang, J., & Malhotra, N. (2014). Contrasting the drivers of switching intent and switching behavior in contractual service settings. *Journal of Retailing*, 90(4), 463–480.
- Zulkarnaen, W., Amin, N. N. (2018). The Effect of Pricing Strategy on Consumer Satisfaction. MEA Scientific Journal (Management, Economics, & Accounting), 2(1), 106-128.

FIGURE, CHART AND TABLE

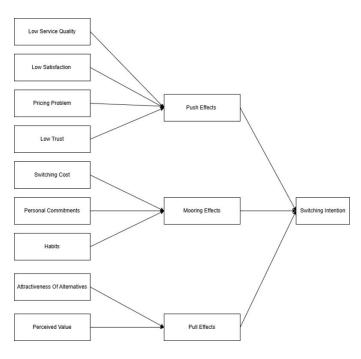


Figure 1. Conceptual Framework Source: (Bansal et al., 2005), (Al-Mashraie et al., 2020)

Table 1. Data Respondent

Segmentation Variable	Indicator	Frequency	Percentage		
Geographic	R	egion			
	West Java	300	100%		
	G	ender			
	Male	141	47%		
	Female	159	53%		
	Education				
		Age			
	18 -30	77	26%		
	31 - 45	134	45%		
	> 46	89	29%		
	Education				
	SMA/K Sederajat	28	9%		
	Sarjana	233	78%		
Demographic	Magister	32	11%		
	Doktor	7	2%		
	Occupation				
	Student	37	12%		
	Entrepreneurs	79	26%		
	Employee	160	53%		
	Teacher/Lecturer	9	3%		
	Housewifes	15	5%		
	Income Level per Month (IDR)				
	1.000.000 - 3.000.000	20	7%		
	3.000.000 - 5.000.000	25	8%		
	5.000.000 - 10.000.000	132	44%		
	> 10.000.000	123	41%		
Psychographic	Mobile Provider				

Telkomsel	273	91%
XL	14	5%
IM3	6	2%
3 (Tri)	4	1%
Smartfren	2	1%
By.U	1	0%
	WiFi Provider	
IndiHome	205	68%
Biznet	41	14%
XL Home	7	2%
First Media	17	6%
Indosat HiFi	12	4%
MyRepublic	7	2%
Oxygen.id	1	0%
Megavision	3	1%
Others	7	2%
Knowle	edge of Telkomsel One	
Yes	242	81%
No	58	19%

Source: Author Analysis

Table 2. Convergent Validity

Construct	Indicator	Loading Factor	AVE
	PU1	0.856	
	PU2	0.868	
Push	PU3	0.806	0.690
1 usii	PU4	0.827	0.070
	PU5	0.824	
	PU6	0.800	
	PL1	0.853	
	PL2	0.797	
Pull	PL3	0.844	0.679
	PL4	0.756	
	PL5	0.865	
	M1	0.799	
	M2	0.791	
Mooring	M3	0.866	0.565
8	M4	0.577	
	M5	0.645	
	M6	0.793	
	SW1	0.788	
Switching Intention	SW2	0.849	0.684
C	SW3	0.842	

Table 3. Composite Reliability

Construct reliability and validity overview					
	Cronbach's alpha	Composite reliability	Composite reliability		
		(rho_a)	(rho_c)		
Mooring	0.848	0.896	0.885		

Pull	0.882	0.893	0.913
Push	0.913	0.947	0.866
Switching Intention	0.768	0.768	0.866

Source: Author Analysis

Table 4. Cross Loading

Table 4. Closs Loading					
	Mooring	Pull	Push	Switching Intention	
M1	0.799	-0.094	-0.085	-0.116	
M2	0.791	-0.152	-0.161	-0.101	
M3	0.866	-0.215	-0.130	-0.163	
M4	0.577	0.014	-0.242	-0.042	
M5	0.645	-0.064	-0.411	-0.091	
M6	0.793	-0.124	-0.360	-0.163	
PU1	-0.197	-0.100	0.856	-0.132	
PU2	-0.254	-0.093	0.868	-0.110	
PU3	-0.238	-0.054	0.806	-0.065	
PU4	-0.235	-0.046	0.827	-0.083	
PU5	-0.286	-0.077	0.824	-0.118	
PU6	-0.275	-0.080	0.800	-0.045	
PL1	-0.126	0.853	-0.149	0.508	
PL2	-0.110	0.797	-0.052	0.353	
PL3	-0.141	0.844	-0.047	0.432	
PL4	-0.140	0.756	-0.031	0.383	
PL5	-0.160	0.865	-0.087	0.462	
SW1	-0.168	0.413	-0.202	0.788	
SW2	-0.049	0.474	-0.074	0.849	
SW3	-0.197	0.413	-0.023	0.842	

Source: Author Analysis

Table 5. Heterotrait-Monotrait Ratio (HTMT)

	Table 5. Heterotran-wionotran Ratio (111W11)					
Heterotrait-Monotrait ratio (HTMT) Matrix						
	Mooring	Pull	Push	Switching Intention		
Mooring						
Pull	0.174					
Push	0.354	0.097				
Switching	0.195	0.630	0.131			
Intention						

Source: Author Analysis

Table 7.Fornell-Larcker Criterion

Fornell-Larcker criterion						
	Mooring	Pull	Push	Switching Intention		
Mooring	0.752					
Pull	-0.165	0.824				
Push	-0.292	-0.094	0.831			
Switching	-0.165	0.536	-0.122	0.827		
Intention						

Source: Author Analysis

Table 8.Collinearity Statistic (VIF) Inner Model

Collinearity statistic (VIF) – Inner Model - List				
	VIF			
Mooring -> Switching Intention	1.140			
Pull -> Switching Intention	1.052			
Push -> Switching Intention	1.119			

Table 9.Path Coefficient Analysis

Twell yet will everified thing pla						
	Path Coefficient – Mean, STDEV, T values, p values					
	Standard devisiation	Tstatistic	P values			
	(O)	(M)	(STDEV)	(O/STDEV)		
Mooring -> Switchin	-0.115	-0.130	0.0047	2.419	0.0016	
	0.406	0.407	0.0062	0.057	0.000	
Pull -> Switching Intention	0.496	0.497	0.0062	8.057	0.000	
Push -> Switching	-0.109	-0.125	0.0057	1.916	0.055	
Intention						

Source: Author Analysis

Table 9.Coefficient of Determination (R^2)

R^2 Overview				
	R^2	R adjusted		
Switching Intention	0.293	0.286		

Source: Author Analysis

Table 10. F^2 Matrix

F ² Matrix				
	Mooring	Pull	Push	Switching Intention
Mooring				<mark>0.016</mark>
Pull				0.331
Push				0.015
Switching Intention				

Source: Author Analysis

Table 11. Q² Matrix

PLSpredict LV summary								
	Q ² predict	RMSE	MAE					
Swicthing Intention	0.267	0.868	0.630					

Source: Author Analysis

Table 12. Model Fit

	14010 12: 1110401111	
Model fit		
	Saturated model	Estimated model
SRMR	0.081	0.081
d_ULS	1.368	1.368
d_G	0.345	0.345
Chi-square	626.220	626.220
NFI	0.814	0.814

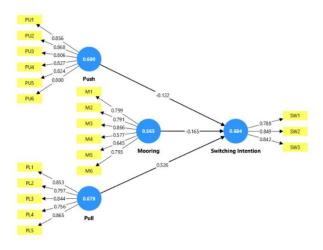

Source: Author Analysis

Table 13. .Multi-Group Analysis (MGA) Results by Generational Segment: Gen X, Gen Z, and Millennials

	winicimias														
	Original (Group_ Gen X)				Mean (Group_ Gen Z)	Mean (Group_ Millenial)	STDEV (Group_ Gen X)	(Group_	STDEV (Group_ Millenial)	t value (Group_ Gen X)		t value (Group_ Millenial)	p value (Group_ Gen X)	(Group_	p value (Group_ Millenial)
Mooring -> Switching Intention	-0.236	-0.173	-0.051	-0.281	-0.203	-0.082	0.182	0.105	0.101	1,297	1,641	0.501	0.195	0.101	0.616
Pull -> Switching Intention	0.278	0.448	0.547	0.295	0.445	0.538	0.148	0.083	0.092	1,886	5,381	5,960	0.059	0.000	0.000
Push -> Switching Intention	-0.215	-0.126	0.027	-0.211	-0.147	0.004	0.159	0.082	0.112	1,352	1,534	0.243	0.176	0.125	0.808

Table 14. Multi-Group Analysis (MGA) Results Pairwise Group Differences and Significance Testing Between Generational Segments (Gen X, Gen Z, Millennials)

		Jetineen Ge	(Gen 11, Gen 2, Williemmans)						
	Difference (Group_Gen X - Group_Gen Z)	Group Milleni	Difference (Group_Gen Z- Group_Milleni al)	X vs Group_Gen	(Group_Gen	Z vs Group_Mille	. –		2-tailed (Group_Gen Z vs Group_Mille nial) p value
Mooring-> Switching Intention	-0.063	-0.185	-0.122	0.637	0.837	0.826	0.725	0.326	0.348
Pull -> Switching Intention	-0.170	-0.268	-0.099	0.840	0.936	0.793	0.320	0.128	0.413
Push -> Switching Intention	-0.089	-0.242	-0.153	0.730	0.891	0.854	0.539	0.217	0.293

Picture 1